Myosin V stepping mechanism.

نویسندگان

  • Giovanni Cappello
  • Paolo Pierobon
  • Clémentine Symonds
  • Lorenzo Busoni
  • J Christof M Gebhardt
  • Matthias Rief
  • Jacques Prost
چکیده

We observe the myosin V stepping mechanism by traveling wave tracking. This technique, associated with optical tweezers, allows one to follow a scattering particle in a two-dimensional plane, with nanometer accuracy and a temporal resolution in the microsecond range. We have observed that, at the millisecond time scale, the myosin V combines longitudinal and vertical motions during the step. Because at this time scale the steps appear heterogeneous, we deduce their general features by aligning and averaging a large number of them. Our data show that the 36-nm step occurs in three main stages. First, the myosin center of mass moves forward 5 nm; the duration of this short prestep depends on the ATP concentration. Second, the motor performs a fast motion over 23 nm; this motion is associated to a vertical movement of the myosin center of mass, whose distance from the actin filament increases by 6 nm. Third, the myosin head freely diffuses toward the next binding site and the vertical position is recovered. We propose a simple model to describe the step mechanism of the dimeric myosin V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Characterization of One-Headed Myosin-V Using Optical Tweezers

Class V myosin (myosin-V) is a cargo transporter that moves along an actin filament with large (approximately 36-nm) successive steps. It consists of two heads that each includes a motor domain and a long (23 nm) neck domain. One of the more popular models describing these steps, the hand-over-hand model, assumes the two-headed structure is imperative. However, we previously succeeded in observ...

متن کامل

Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy.

Myosin V is biomolecular motor with two actin-binding domains (heads) that take multiple steps along actin by a hand-over-hand mechanism. We used high-speed polarized total internal reflection fluorescence (polTIRF) microscopy to study the structural dynamics of single myosin V molecules that had been labeled with bifunctional rhodamine linked to one of the calmodulins along the lever arm. With...

متن کامل

The Mechanism of Myosin VI Translocation and Its Load-Induced Anchoring

Myosin VI is thought to function as both a transporter and an anchor. While in vitro studies suggest possible mechanisms for processive stepping, a biochemical basis for anchoring has not been demonstrated. Using optical trapping, we observed myosin VI stepping against applied forces. Step size is not strongly affected by such loads. At saturating ATP, myosin VI kinetics shows little dependence...

متن کامل

The stepping pattern of myosin X is adapted for processive motility on bundled actin.

Myosin X is a molecular motor that is adapted to select bundled actin filaments over single actin filaments for processive motility. Its unique form of motility suggests that myosin X's stepping mechanism takes advantage of the arrangement of actin filaments and the additional target binding sites found within a bundle. Here we use fluorescence imaging with one-nanometer accuracy to show that m...

متن کامل

Myosin-V stepping kinetics: a molecular model for processivity.

Myosin-V is a molecular motor that moves processively along its actin track. We have used a feedback-enhanced optical trap to examine the stepping kinetics of this movement. By analyzing the distribution of time periods separating discrete approximately 36-nm mechanical steps, we characterize the number and duration of rate-limiting biochemical transitions preceding each such step. These data s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 39  شماره 

صفحات  -

تاریخ انتشار 2007